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Chapter 1

Introduction

[Guus: Chess or Progress vision on growth of market of embedded computing here.] A

very important choice to be made when designing an embedded computer system is how to

divide the functionality of the system in hardware and software parts. Traditionally the choice

what to implement in hardware and what to implement in software is made early in the design

process. Both parts are then made in separate tracks by separate design teams. Goal of co-

design is to explore the whole design-space to be able to make well-informed decisions and to

be able to make this decision in a later phase in the design process.

1.1 Traditional design

Traditionally complex embedded systems are designed around a microprocessor in a Von

Neumann architecture. A Von Neumann system is fundamentally a sequential system. There

is heavy optimalisation inside the CPU itself (pipelining etc) but ultimately the commands are

executed one by one. Systems based on microprocessors have several benefits. Microprocessors

are very well optimized and they allow design of families of product that can be built. Such a

family of product can provide various feature sets at a different price point and can be extended

to keep up with rapidly changing markets[33].

However, the fact that each command is executed sequentially leads to a fundamental

limitation. Backus [1978] calls this the ”von Neumann bottleneck.” He points out that this

bottleneck is not only a physical limitation, but has also been an ”intellectual bottleneck” in
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limiting the way we think about computation and how to program it.

Still, it is possible to create design embedded chips that have a lot of parallelism. ASICs

are specialized chips, that are used for example for [...]. They are similar to processors in the

sense that they are also ’hardwired’ solutions. It is very expensive to design an ASIC, and a

very slow process. Therefore, customizing an ASIC for a single application is often not feasible.

Early approaches in Co-Design therefore started with a components of high granularity, such as

ASIC and microprocessors.

If you’ll design your whole system from the ground up (thus without using a microproces-

sor), or do this with a part of your system the optimalizations found in existing microprocessors

are not available. The designer will have to implement these. At the other side however there

is a huge potential gain because the layout of the hardware can in theory be tailored exactly

to the functional requirements. This can be extremely profitable, especially when the problem

to be solved is mainly parallel in character. Therefore an integrated design approach is very

interesting.

Often a mixture is used. Parts of the hardware are designed from scratch, but a micropro-

cessor is also used. This allows the system to benefit from the microprocessor’s specialization,

and for the parts of the system that benefit most of this a parallel implementations.

1.2 Programmable logic

Programmable logic devices (PLDs) are computer chips that can be programmed to im-

plement circuits requiring both combinational and sequential logic. Reconfigurable logic devices

are a class of programmable logic devices which may be reprogrammed as often as desired.

FPGA’s are a reconfigurable logic devices that are becoming very popular[8]. Three direct

benefits of the reconfigurable approach can be recognized: specialization, reconfigurability and

parallelism[30] [Guus: use more of Tessier on future developments [30]]. FPGA’s shorten the

development cycle dramatically and are much cheaper to use too. This allowed research to

Co-Design to increase a lot, and also consider more fine-grained approaches.
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Obviously designing hardware and software integrated is an extremely complex task

with many aspects. There is a wide range of architectures and design methods so the hard-

ware/software co-design problem is treated in many different ways.

In my thesis I’ll investigate what methods exists that comply with the Chess business.

I’ll compare them with each other. I’ll also investigate the problem of the paradigm shift (or

the prevention of this) when designing parallelism in a high-level language. Ideally the resulting

hard- and software description should be parallel in nature.

In this paper I’ll give an overview of the field and indicate the open issues. I’ll try to

answer to question which language is suitable for which problem.

1.3 Outline

First we’ll look at the definition of Co-Design and the problems it tries to solve. In

Chapter 5 the different types of approaches are described, and which classifications can be

made. It turns out that the paradigms, the computational models, are very important. Chapter

6 describes computational models that are commonly used to model (parts of) systems.

A single paradigm approach has serious disadvantages so various hybrid models have

been proposed in literature. In Chapter 7 existing projects and models will be described and

analyzed using the classifications and ideas found in the first part. Finally we’ll look into a

few case studies in Chapter 9 to get a better view of how the multi-paradigm modelling works

and how well it can be applied. In Chapter 8 the pro’s and contra’s of the investigated hybrid

methods will be discussed.
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Chapter 2

Assignment

”To investigate various development methods and to investigate how an integrated ap-

proach of HW/SW design can improve system development at Chess.”

I’ll give a thorough introduction to the field of codesign. and how this could support the

design of programmable hardware such as FPGA’s.

I will investigate the relevance and relationships between these specification and design

languages in the track from specification to implementation. I’ll research to which degree existing

development and implementation methods support compatible paradigms.

The focus in this internship will be on the shift of paradigms when traversing through

the various levels of detail.
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Chapter 3

Co-Design

”A design methodology supporting the concurrent development of hardware and software

(co-specification, co-development, and co-verification) in order to achieve shared functionality

and performance goals for a combined system.” [Guus: found it on the internet, where is it from

exactly?]

3.1 Modelling and specification

There are several tasks that must be performed to create a system-level design. To

comprehend the benefits of various Co-Design technologies it is important to understand how

the design process works.

The co-design system design process for embedded systems includes modelling, validation,

and implementation[26]. These processes are fundamental steps in any methodology aimed to

design an embedded system.

3.1.1 Modelling

’There is a subtle relationship between the specification of a system and the modelling of

a system. An executable specification, for example, is also a model of an implementation. The

difference is in emphasis. A specification describes the functionality of a system, and may also

describe one or more implementations. A model of a system describes the functionality. In a

specification it is important to avoid over-specifying the design, to leave implementation options
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open. In a model, often the key criteria are precision, simplicity and efficient simulation. A

model should be the most abstract model that represents the details being tested.’[5].

Specification is closer to the problem level, at a higher level of abstraction, and uses one

or more models of computation. A Specification undergoes a synthesis process (which may be

partly manual) that generates a model of an implementation. That model itself may contain

multiple models of computation.

The outcome of the modelling process is the internal design representation (IDR). There

is a trade-off between scalability and expressiveness in this IDR[32]

3.1.2 Hardware/software Partitioning

[Guus: should be somewhere else]. ’The partition of a system into hardware and software

is of critical importance because it has a huge impact on the cost/performance characteristics of

the final design. In the case of embedded systems, a hardware/software partition represents a

physical partition of system functionality into application-specific hardware and software execut-

ing on one (or more) processor(s).’[26]. When considering general purpose computing systems,

a partition represents a logical division of system functionality, where the underlying hardware

is designed to support the software implementation of the complete system functionality. This

division is elegantly captured by the instruction set. Thus instruction selection strongly affects

the system hardware/software organization.

Obviously is important to look at the architectural organization of the system. Although

it is possible to generate a complete system using only FPGA’s, it is very common to use a

combination of 1 (or more) processors with dedicated hardware. This is called coprocessing[26]

3.1.3 Validation

Through the validation process, the designer achieves a reasonable level of confidence

about how much of the original embedded system design will be n fact reflected in the final

implementation.[32]. There are 3 three methods for validation:
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(1) Simulation

(2) Prototyping

(3) Formal Verification

There has been a lot of research in the simulation of heterogeneous hardware/software

systems [32, 19, 5]. Formal verification allows for a more thorough test of the embedded system

behavior (maximum behavioral coverage) by means of logics.

3.1.4 Synthesis

The final stage in the development of an embedded system is the synthesis process. In the

phase architectural information is taken into account. Varea[32] calls this a merger between the

IDR with the technology library. It is important that the intermediate IDR or specification

is not too operational (influenced by the current technology), it will bias the design towards a

specific architecture.

On the lowest level, FPGA’s can be used to implement SM’s, datapaths and nearly any

digital circuit. The outcome of the synthesis process is a final implementation of the embedded

system.
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Chapter 4

Background and related work

4.1 Related approaches

4.1.1 Software in the loop

Some of the issues Co-Design tries to solve are also handled by ’Software-In-The-Loop’.

This is developing software in a virtual hardware environment. Although this easies the design

of software for hardware it does not allow the full improvements made possible by Co-Design.

4.1.2 Chuncky function unit architecture

’The configurable computing community is divided into two camps, according to the level

of abstraction provided by the programmable hardware. This thesis deals with the hardware

on a very fine level of granularity: digital circuits are translated into netlists, which are com-

posed of logic gates and flip-flop. However in the second camp are the architecture based on

”chunky” function units suchs as complete ALU’s and multipliers. There architectures limit

the programmable hardware to the interconnect among the function units, but implement those

units in much less IC area.’ [25]

4.1.3 Reconfigurable hardware

Reconfigurable systems exploit FPGA technology, so that they can be personalized after

manufacturing to fit a specific application. The operation of reconfigurable systems can either
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involve a configuration phase followed by an execution phase or have concurrent (partial) con-

figuration and execution.[26]. The major co-design problem in this type of systems consists of

identifying the critical segments of the software programs and compiling them efficiently to run

on the programmable hardware. This is a different field and will not be treated in this thesis.

4.1.4 Hybrid systems

Most traditional co-design methods explore ways of modelling digital systems. Embedded

systems however, often interact with an analog environment. Traditionally, this is the domain of

control theory and related engineering principles. Because of the way models are often treated

(digital) the analog environment is often abstracted away (to a digital translation) by computer

scientists. This way traditional co-design is unable to garantuee safety and/or performance of

the embedded device as a whole.

To address this issue hybrid embedded system models have been designed[2, 29]. The

issues that co-design fases in combining various models of computations and making sure prop-

erties are valid throughout the whole design phase can of course also be found in this hybrid

system modelling.
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Chapter 5

System Level Modelling

Mooney et al.[27]: Approaches to hardware/software co-design of embedded systems can

be differentiated in several ways. One way is to consider the system-level specification, which

is either homogeneous (i.e., in a single specification language) or heterogeneous (i.,e. involving

multiple modelling paradigms). Another way is to distinguish how the CAD tool partitions the

system specification: fine-grained or coarse-grained.

5.1 Homogenous modelling

Homogeneous modelling implies the use of single specification language for the modelling

of the overall system. Lee[20] calls this the ’grand unified method’. Co-design starts with a

global specification given in a single language. This specification may be independent of the

future implementation and the partitioning of the system into hardware and software parts. In

this case co-design includes a partitioning step aimed to split this initial model into hardware and

software. The outcome is an architecture made of hardware processors and software processors.

The is generally called a virtual prototype and may be given in a single language or different

languages. [17]. Lee[20] sees as a big problem that a homogenous approach imposes a model of

computation which might be good for a subset of systems but bad for others.
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5.2 Heterogeneous modelling

Heterogeneous modelling allows the use of specific languages for the hardware and soft-

ware parts. The co-design starts with a virtual prototype where the hardware/software parti-

tioning is already made. Here the emphasis is on the integral designing of the parts to make

sure the overall system has the required properties. The key issues are validation and interfacing

[17]. A lot of research is done on the integration of different system parts tat enables system

optimization across language boundaries. [this sentence from the SPI Workbench].

5.2.1 Co-simulation vs. compositioning

[7] differences between 2 different types of heterogenous modelling. The compositional

approach aims at integrating the partial specification of sub-systems into a unified representation

which is used for the verification and design of the global behavior. Examples are Polis, Javatime

and SpecC.

The cosimulation-based approach consists in interconnecting the design environments

associated to each of the partial specifications. Like its names suggests, with co-simulation the

software parts and the hardware components of an system and their interactions are simulated

in one simulation. It does not provide such a deep integration as compositioning does however

it does allow for modular design. Communication is often done using a cosimulation bus, that

is in charge of transferring data between the different simulators.

The Cosimulation-field is reasonably well established. Sometimes cosimulation is used to

simulate the behavior of a system consisting of 2 models: the hardware and the software, and

sometime it is used to model on a more abstract level where the hardware vs software decision

has not been made yet.

It is good to note that the hardware is often simulated (although often not real-time, as

it’s just a simulation). However there has also been some research in replacing the hardware

simulator with an FPGA (or multiple FPGAs) that simulate the real target hardware[19].



12

Chapter 6

Computational Models

Modelling is a the heart of development methods. The computational models can be found

in the Immediate Representation Language. All Co-Design systems are based on a computational

model, or combine a few of them.

A computational model is a formal, abstract definition of a computer. It describes the

components in a system and how they communicate and execute. Several models exists. There

are a number of authors who made an overview of various development methods, i.e. [34], [17].

[Guus: here explain what I want to find about of the models]. Ie, timing, hierarchy.] An

essential difference between concurrent models of computation is their modelling of time. [20]

(page 11). Lui[22] states that the different notions of time make programming of embedded

systems significantly different from programming in desktop, enterprise or Internet applications.

Lee[21] proposed a mathematical framework to compare certain properties of models of compu-

tation. This allows for a precise definition of the various computational models.

6.1 Concurreny or: Dataflow vs. Control flow oriented

Fundamental to embedded software is the notion of concurrency. There is a lot of research

done on compiling concurrent languages into sequential code that can be run on a microprocessor,

see for example [18]. For this thesis however it is more interesting to see what happens when

this paradigm-shift does not have to be made.

There are models that are designed to describe dataflow oriented systems (ie DSPs) and
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there are models more suitable for control-flow systems.However this approach lacks generality as

most systems are not easily put in either one category. Most complex system are a combination

of data- and control-flow oriented parts. Varea[32] proposes a classification according to the

following taxonomy:

(1) Models originally developed for control-dominated embedded systems and later ex-

panded to include data-flow (these models will be called MCD).

(2) Models developed in a data-dominated basis extended to support also control flow (re-

ferred to as MDC

(3) Unbiased model developed specifically to deal with combined control/data-flow interac-

tions (Mb)

[Guus: use this classification!] It should be noted that the difference between a control-flow or

data-flow oriented computational model is important for both control and data-oriented systems.

Many control-systems use complex sensors or subsystems such as image processing algorithms

that are best specified using a type of data-oriented computational model[23].

6.2 Communication

There are two basic models for communication, message passing and shared memory. Or

Remote Procedure Calls.

6.3 Synchronization

There are 2 synchronization modes: synchronous and asynchronous.

6.4 Overview

6.4.1 Imperative models

In an imperative model of computation, modules are executed sequentially to accomplish

a task. This is the most trivial computational model there is and most authors don’t even
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mention it. However in Chang’s paper[5] it is mentioned because it can be used in combination

with other models in a hierarchical system. See also Chapter 8.1.

6.4.2 Differential Equations

These are often used to model mechanical dynamics, analog circuits, chemical pro-

cesses and many other physical systems. [12].TBD. When using real numbers as time model,

continuous-time systems are active over the entire time axis processing their input and producing

output.[29].

6.4.3 Difference Equations

Like differential equations, but discrete. TBD. These two are very important as they deal

with a very common type of signal from the outside world. Discrete-time systems can only react

to their input and produce new output at distinct, equidistant time instances. [29]

6.4.4 Process networks and dataflow

In a process network model of computation the arcs represent sequences of data values

(token) and the bubbles represent functions that map input sequences into output sequences.

Certain technical restriction are necessary to ensure determinacy.[20]. They are not suitable for

control-logic. [Guus: uitwerken wat voor soort data-flow modellen er allemaal bestaan.]

6.4.5 Discrete-event models

In a discrete-event system, modules react to event that occurs at a given time instant and

produce other events either at the same time instant or at some future time instant. Execution is

chronological[5]; time is an integral part of the model. Events will typically carry a time stamp,

which is an indicator of the time at which the event occurs within the model. A simulator for

Discrete-Event models will typically maintain a global event queue that sorts events by time

stamp. This sorting can be computationally costly. [Guus: hard to simulate, nice in hardware].
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6.4.6 Petri Nets

In the classical approach a Petri net is composed of 4 basic elements: a set of places,

a set of transition, an input function that maps transitions to places, and an output function

which is also a mapping from transition to places. This is an well-understood modelling tool.

Two important features of Petri nets are its concurrency and asynchronous nature.[6]. [Guus:

expand a little bit: where are petri nets good for?]

6.4.7 Synchronous models

In synchronous languages, modules simultaneously react to a set of input events and in-

stantaneously produce output events. If cyclic dependencies are allowed, then execution involves

finding a fixed point, or a consistent value for all events at a given time instant.[5]

Very often real-time systems are specified by means of concurrent processes, which com-

municate asynchronously [16].

The synchrony hypothesis forms the base for the family of synchronous languages. It

assumes, that the outputs of a systems are synchronized with the system inputs, while the

reaction of the system takes no observable time. So time is abstracted away. The synchrony

hypothesis abstracts from physical time and serves as a base of a mathematical formalism. All

synchronous languages are defined formally and system models are deterministic.

’In synchronous languages, every signal is conceptually (or explicitly) accompanied by

a clock signal. The clock signal has meaning relative to other clock signals. It defines the

global ordering or events. Thus, when compariung two signals, the associated clock signals

indicate which events are simultaneous and which precede or follow others. A clock calculus

allows a compiler to reason about these ordering relationships and to detect inconsistencies in

the definition.’[5].

This model serves as a good implementation model.
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6.4.8 Rendezvous models

In a rendezvous model, the arcs represent sequences of atomic exchanges of data between

sequential processes, and the bubbles presents the processes. [20]. Examples are Hoare’s CSP

and Milner’s CCS. This model of computation has been realized in a number of concurrent

languages, like Lotos and Occam. [Guus: based on algebra? How is timing handled?]

6.4.9 Finite-state machines

The finite-state machine model has been widely used in control theory and is the foun-

dation for the development of several models for control-dominated embedded systems. The

classical FSM consists of a set of states, a set of inputs, a set of outputs, a function which

defines the outputs in terms of input and states and a next-state function.[6]. FSM are excellent

for control logic in embedded systems[20]. They can very well be formally analyzed and it is

relatively straightforward to synthesis code from this model. FSM have a number of weaknesses.

They are not very expressive, and the number of states can get very large even in the face of

only modest complexity. Is intended for control-oriented systems with relatively low algorithmic

complexity.

A number of variations has been proposed to overcome to weaknesses of the classical

FSM model. [Guus: SOLAR here[7]]. Another one is the CFSM model. It is based on FSMs

and the communication primitive is called event.[6]. See also paragraph 7.8.

6.5 Comparison

[6] also made a comparison of various computational models.
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Computational model Clock Property X

Differential Equations ? ?

Difference Equations ? ?

Process networks and dataflow ? ?

Discrete-event models ? ?

Petri Nets Asynchronous MCD

Synchronous/reactive models Synchronous ?

Rendez-vous ? ?

CFSM MCD ?

SOLAR ? ?
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Chapter 7

Hybrid systems

Hybrid systems are systems that allow more than one computational model in a system

to be used. Experience suggest that several MoC are required for the design of a complete

system.[5]. A nice illustration of the need for multiple computational models can be found in

[22]:

7.1 Example: internal combustion engine

A cylinder of an internal combustion engine has four working phases: intake, compress,

explode, and exhaust. The engine generates torque that drives the power train and the car body.

Depending on the car body dynamics, the fuel and air supply, and the spark signal timing, the

engine works at different speeds, and thus makes phase transitions at various time transitions.
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The job of the engine controller is to control the fuel and air supplies as well as the spark signal

timing, corresponding to the drivers demand and available sensor information from the engine

and the car body.

The engine and the car body in this example are mechanical systems, which are naturally

modelled using differential equations. The four phases of the engine can be modelled as a finite

state machine, with a more detailed continuous dynamics for the engine in each of the phases.

While all the mechanical parts interact in a continuous-time style, the embedded controller,.

which may be implemented by some hardware and software, works discretely.

Additionally, sensor information and driver’s demands may arrive through some kind of

network. The controller receives this information, computers the control law, controls the air

and fuel values, and produces spark signals, discretely. So, we want to use a model that is

suitable for handling discrete events for the network and the controller.

In this very common example, we have seen both continuous-time models and several

discrete models: finite state-machines, discrete events, and real-time scheduling.

7.2 Trivial

It’s common for a specification language to allow more than 1 model of computation.

However this does not always mean that this allows for suitable high-level mixture of 2 models.

An imperative language can be used to implement for example a dataflow MoC[5]. It is obvious

that low-level languages such as VHDL are able to implement different models of computa-

tion. However, their lack of abstraction disqualifies them as candidates for modelling combined

computational model-systems.

7.3 Old tools revived

Many languages and tools that were developed based on a single model start to embrace

other models [12]. The downside of such large languages with multiple MoC’s is (according

to [5]) that formal analysis may become very difficult. It compromises the ability to generate
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efficient implementations or simulations and makes it more difficult to ensure that a design is

correct. It precludes such formal verification techniques as reachability analysis, safety analysis

and liveness analysis.

7.4 New hybrid tools

However also new frameworks have been developed that took multiple paradigms into

their design from the beginning. A framework is a software architecture that specifies the

possible interactions of componenets, provides a set of services that components can use and

may have a set of formal properties for the system.

[Guus: this is an important chapter and I want to extend this a lot.]

7.5 Ptolemy II

The Ptolemy II software environment provides support for hierarchically combining a

large variety of models of computation and allows hierarchical nesting of models.[12]. It combines

the wish for a homogeneous and thus predictable model with the desire to mix partial models

of different kinds in a common heterogeneous model by hierarchically nesting sub-models of

potentially different kinds.

7.6 HyCharts

7.7 Simulink

Existing (commercial) tool. [22] calls it a framework. A modelling and simulation envi-

ronment for continuous-time dynamic systems with discrete events.

7.8 *charts

Statecharts are essentially a combination of FSMs with a SR. The tools Statemate from

Ilogix uses statecharts as its control specification model.
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A recent development is *Charts (pronounced Starcharts). TBD.

7.9 Moses framework

7.10 Solar/Music

[7] describes a multi-language approach at the system level providing both system-level

refitment and high-level interfaces synthesis.

7.11 The SPI Workbench

The SPI Workbench citeErnst is based on intervals of system properties and is specifically

targeted to cosynthesis.
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Chapter 8

Discussion of hybrid models

Many parts in the design of embedded system require manual decisions, this remains so

when using co-design methods. The integration co-design offers is valuable because of a) vali-

dation, b) easier synthesis of code from a model that allows hard- and software to be generated.

Because of the complexity of most systems, manual decisions are sometimes not always

feasible. To use all of to potential improvements that a later HW/SW partition decision allows,

it is therefore very important to reduce the user-decisions as far as possible. This has been

recognized an there are various methods for systematic design space exploration cite(cassidy).

8.1 Hierarchy/Emergent behavior

’Brute-force composition of heterogeneous models may cause emergent behavior. Model

behavior is emergent if it is caused by the interaction between characteristics of different formal

models and was not intended by the model designer.’[12]

A common way to prevent unwanted emergent behavior is isolating various subcompo-

nents and letting these subcomponents work together in a hierarchical way. Hierarchical in

the sense of a containment relation, where an aggregation of components can be treated as a

(composite) component at a higher level. In general, hierarchies help manage the complexity of

a model by information hiding – to make the aggreagation details invisible from the outside and

thus a model can be more modularized and understandable[22].

’Note that in Ptolemy, models of computations are mixed hierarchically. This means that
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two MoC’s do no interacts as peers. Instead, a foreign MocC may appear inside a process. In

Ptolemy, such a process is called a wormhole. It encapsulates as subsystem specified using one

MoC within a system specified using another. The wormhole must obey the semantics of the

outer MoC at its boundaries and the semantics of the inner MoC internally. Information hiding

insulates the outer MoC from the inner one.’ [5]

There are other ways to mix models of computation too. Statemate uses views.

8.2 On synthesizing code

A discrete-event model of computation is well suited for generating hardware. It is not

very suitable to generate (sequential) software[5] (p. 131). ’This is for example why VHDL

simulate the the designer by taking so long. A model that heavily uses entities communicating

through signals will burden the discrete-event scheduler and bog down the simulation. Thus, a

specification built on discrete-event semantics is a poor match for implementation is software.

By contrast, VHDL that is written as sequential code runs relatively quickly but may

not translate well into hardware. The same goes for C: it runs very quickly and is well suited

for software, but not for specifying hardware.

Dataflow and finite-state models of computation have been shown to be reasonably re-

targettable. Hierarchical FMS such as Statecharts can be used effectively to design hardware

or software. It has also be shown that a single dataflow specification can be partitioned for

combined hardware and software implementation.’[5] [Guus: very interesting, expand this].
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Chapter 9

Case Studies

9.1 Method A: ForSyDe

9.1.1 Digital Equalizer

An interesting method has been development by Sander and Jantsch[28, 16]. In their

model events are totally-ordered by their tags. Every signal has the same set of tags. Events with

the same tag are processed synchronously. There is a special value ⊥ (”bottom”) to indicate the

absence of an event. These are necessary to establish a total ordering among events. A system is

modelled by means of concurrent processes; it is a model based on the synchronous-assumption

(see Chapter 6.4.7).

Lu[24] shows how to transform a system specification described in ForSyDe into its hard-

ware and software counterparts. He does not provide a mixed implementation of HW and SW.

The hardware version of the Digital Equalizer that Lu makes is described using behavioral

VHDL. The process are described using skeletons and these are then synthesized to VHDL code.

The process described is manual. The Haskell code turns into behavioral VHDL quite easily.

To generate (naturally sequential) C code an analysis phase is done to create a PASS.
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9.2 Method B: SDL and Matlab

9.2.1 Digital Equalizer

[3] also investigated the design of a Digital Equalizer. They used a combination of SDL

and Matlab as their design languages.

SDL is used to model the control parts, Matlab is used for the DSP parts.
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Chapter 10

Conclusions

Most Co-Design tools make use of an internal representation for the refinement of the

input specification and architectures[17]. Many such internal representations exist. They are all

based on one or more Computational Models.

Experiments with system specification languages have shown that there is not a unique

universal specification language to support the whole design process for all kinds of applications.

[17].

The fundamental computation model to use is first of all dependent on the type of problem

to be solved. However there is a definite trend towards heterogenous modelling systems that

allow more mixed types of systems to be modelled.

Many researchers are doubting whether a grand unified approach will work. Specifically

the group of Edward A. Lee (who created the Ptolemy system) has doubt about this[5]. In order

to be sufficiently rich to encompass the varied semantic models of the competing approaches,

they become unwieldy, too complex for formal analysis and high quality synthesis. He claims

that generality can be achieved through heterogeneity, where more than model of computation

is used.

Ptolemy II seems to be the most mature of the tools investigate, specifically the theoretical

foundation of mixing various computational models is well thought-out.

[Guus: etc etc... this will take a lot of work!]
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